Cryptic freshwater species contribute to biodiversity, but their community integration remains unclear. In a recent study published in Freshwater Biology, we examined local and regional co-occurrences of cryptic amphipod species to understand the role of phylogenetic relationships in shaping biodiversity patterns. Our findings suggest that regional overlap results from dispersal rather than phylogenetic relatedness, with sympatries occurring more frequently among species from different clades. Ultimately, spatial patterns reflect historical events like mountain formation and climatic shifts, influencing biodiversity at local and regional scales.
Category: Amphipods
Environmental DNA and participatory science to map groundwater fauna

In our most recent study, published in Scientific Reports (https://doi.org/10.1038/s41598-023-44908-8), we used participatory science and environmental DNA (eDNA) metabarcoding to investigate groundwater amphipods and to capture a broader picture of the groundwater community, including microorganisms. Combining both methods revealed co-occurring amphipod species and their correlation with overall groundwater biodiversity, enhancing our understanding of subterranean ecosystems. In conclusion, we propose two novel methods for studying groundwater organisms, which can be applied independently or, more effectively, in combination. These approaches offer valuable tools for addressing uncharted aspects of subterranean biology.
Video about AmphiWell
Dispersal and connectivity as key factors shaping the genetic diversity of Gammarus fossarum

In our recently published study in Molecular Ecology, Emanuel A. Fronhofer, Florian Altermatt, and me analyzed empirically observed genetic diversity of Gammarus fossarum metapopulations across the Rhine drainage area within Switzerland. We used microsatellite data and stochastic simulations to study the role of dispersal behaviour on observed genetic diversity. Allelic richness and observed heterozygosity were higher in more central nodes, unlike expected heterozygosity. Stochastic simulations suggest upstream movement probability and dispersal rate to be key factors explaining this finding. The study is open access. A huge thank you to Anja Westram and Jukka Jokela for support early on during analysis and providing data.
New groundwater amphipod discovered

Thanks to the collaboration with many water well managers, Nicole Bongni was able to describe a previously undocumented biological diversity in groundwater in her master’s thesis. The focus was on amphipods, in particular the genus Niphargus. Among the discoveries was a completely new species, which we have now described scientifically in Subterranean Biology. The name of the new species: Niphargus arolaensis, the Aare groundwater amphipod. The name is derived from the fact that we have only been able to detect the species at three sites in the Aare River basin. This research shows that we still understand the groundwater habitat far too poorly and therefore cannot protect it adequately. Thanks to the project AmphiWell we can continue basic research on this topic.