In an international collaboration published in Global Change Biology, we investigated the importance of groundwater as a key global ecosystem. Groundwater plays a central role in the global water cycle, harbors a unique biodiversity and provides important ecosystem services such as clean drinking water. However, it is under increasing pressure and is often neglected in nature conservation. Our assessments show that groundwater interacts with more than half of the land surface. It is therefore essential to recognize its interconnected nature and pursue holistic approaches to groundwater protection. We propose eight concrete steps for a scientific and political agenda to protect groundwater and combat the loss of its biodiversity.
The latest two publications from our work on groundwater treat taxonomic questions on Niphargus and Haplotaxis. In a first study published in Zoologischer Anzeiger, we used molecular methods to review the taxonomic status of the Niphargus ruffoi clade, including the species N. ruffoi and Niphargus arolaensis, across the Alpine arc. In another study published in Zoosymposia, we questioned the supposedly sub-cosmopolitan species status of Haplotaxis gordioides, with our results suggesting that the species is a complex of at least 6 cryptic species in Switzerland.
Through close cooperation with local waterproviders in the Töss catchment area, we were able to detect a diverse groundwater fauna. The corresponding publication has just been published in Molecular Ecology (https://doi.org/10.1111/mec.16955). In contrast to earlier studies, we did not have to use nets and actually catch the organisms, but were able to detect them on the basis of DNA traces in water samples. We were able to show that the diversity of groundwater fauna differs depending on whether the samples were taken from agricultural or forested sites. However, it is not yet possible to make a statement about the cause or to do a water quality assessment. Eawag has published a news article on the publication. Many thanks also to the FOEN, the SVGW and Eawag for their financial support of the research project.
Being a field biologist by training, I always wanted to study my beloved amphipods under laboratory conditions. Turns out it is not as straightforward. Our recent publication in Science of The Total Environment highlights some of the things we learned over the last few years. While some amphipod species such as Hyalella azteca are easy to breed in captivity, the freshwater genus Gammarus from Central Europe is notoriously hard to keep and maintain in the lab. Hence, most experiments rely on wild-caught animals. From an scientific point of view, having lab-bred individuals available is the preferred option. To improve survival and reproduction in lab cultures of Gammarus fossarum, we caught thousands of G. fossarum and ran several experiments in our laboratory facilities, tweaking around with food supply, day-length, water temperature, cage size etc. We supplemented the diet of G. fossarum with protein-rich food and provided additional shelter. Both these measures increased survival rate of laboratory-based populations significantly, especially the feed enrichment. We also manipulated the day length (fixed vs. variable). We did not observe a significant effect of day length on the abundance and reproductive activity of G. fossarum. Apart from these main findings, we provide several detailed husbandry protocols in the paper (https://doi.org/10.1016/j.scitotenv.2022.158730). They are intended as starting point for future experiments in environmental sciences and ecotoxicology that rely on lab-bred G. fossarum. I want to thank everyone involved in improving our lab cultures of G. fossarum, especially Sarah Bollina, Eva Cereghetti, Morris Galli, Samuel Hürlemann, Silvana Kaeser, Chelsea Little, Manja Schleich and I want to acknowledge financial support by Eawag, University of Zurich, and BAFU.
Thanks to the collaboration with many water well managers, Nicole Bongni was able to describe a previously undocumented biological diversity in groundwater in her master’s thesis. The focus was on amphipods, in particular the genus Niphargus. Among the discoveries was a completely new species, which we have now described scientifically in Subterranean Biology. The name of the new species: Niphargus arolaensis, the Aare groundwater amphipod. The name is derived from the fact that we have only been able to detect the species at three sites in the Aare River basin. This research shows that we still understand the groundwater habitat far too poorly and therefore cannot protect it adequately. Thanks to the project AmphiWell we can continue basic research on this topic.