Amphipod diversity in fluvial networks

Amphipod Richness Rhine
Amphipod species richness in the river Rhine drainage basin of Switzerland. Local species richness
along the fluvial network is depicted as a heatmap, with streams and underlying catchments colorized with
respect to the observed catchment-level species richness (Figure from Ecosphere 9(2): e02102)

In the recently published open-access article in Ecosphere we studied the influence of fluvial network topology on different measures of amphipod diversity. The scientific novelty is the distinction between native and non-native species within a single taxonomic group in a large and natural system. The study covers the 27,882-km2 drainage basin of the river Rhine in Switzerland and is based on a graph theory approach.

Patterns of native and non-native species in fluvial networks

As hypothesized, species richness increased along the network from headwaters to the outlet nodes. But native and non-native amphipod showed different patterns, with headwaters being refugia for native species and more downstream nodes being hotspots of biological invasions. Additionally, results from species turnover indicated a much lower dispersal limitation for non-native species. The amphipod community structure closely mirrored the topological modularity of the network.

Implications for conservation ecology

Our results highlight that connectivity plays an important role in community formation, also on a larger scale.  Rivers and streams are essential in explaining biological invasions.

An endemic amphipod of the Alps

Gammarus alpinus from Lej da Silvaplauna (Switzerland)

In our most recent paper, Florian Altermatt, Cene Fišer, and me describe a new  amphipod species that is endemic to the Alps. What has been considered to belong to the circumboreal Gammarus lacustris species complex turned out to be a highly diverged lineage. It represents an own species within the Alps. Given its natural but restricted distribution, we name the endemic amphipod species Gammarus alpinus sp. nov.

Already endangered?

The species is commonly found in high alpine lakes of Central Europe. Although its wide distribution, invasive species and increasing anthropogenic pressure in its natural habitat impose challenges to the newly described species. Assigning a name to this biological entity hopefully facilitates the conservation efforts. Our study is published in the Zoological Journal of the Linnean Society. It highlights the importance of combining different methods to resolve cryptic diversity. Furthermore I would hereby like to acknowledge all the people and institutions that helped to conduct this study.